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Background
MicroRNAs (miRNAs) are 20-22nt long transcripts that form protein 
complexes which bind to mRNA and decrease the translation rate of 
the target mRNA. An ongoing problem in miRNA research is target 
prediction, as identifying targets is necessary for biological 
interpretation of the findings.

Learning features from data
In our future work we propose an alternative approach to miRNA 
target prediction by training a classifier on experimental data.
First, prior on initial sequence matches is determined by co-expression 
data. Then features such as sequence signatures, quality of the match 
and binding site context (as used in TargetScan) are used to calculate 
the probability of the initial match being a meaningful interaction. 
Informative features are learned from the training set.

This method benefits from allowing more mismatches and non-
canonical bindings than conventional algorithms, as suggested in a 
recent CLASH study by Helwak and colleagues (2013), it is also open to 
discovery of new sequence patterns.
Gold standard data which form the training set for our classifier are 
rapidly accumulating in multiple species and conditions thanks to high 
throughput techniques such as HITS-CLIP and CLASH, these data are 
likely to greatly improve the accuracy and reliability of miRNA target 
prediction in the near future. 

Evaluation
We evaluated our system based on Precision vs. Recall and we 
compared it to the four algorithms used as sources of predictions 
(Pictar, Miranda, TargetScan, DIANA). We used a sample of 160 human 
miRNAs which had at least 10 confirmed targets. Ground truth data 
come from miRTarBase (2014) and include experimentally confirmed 
interactions observed in various different data collection protocols, we 
did not differentiate between data collection protocols.
Overall, we observed improvement over single source predictions, 
miRNAtap aggregation with minimum 3 sources (Agg3) achieves 
higher precision at the top of the list than aggregation with minimum 
2 sources (Agg2) but there is a trade off with recall. We recommend 
using different parameters depending on the use case.
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Bioconductor R package miRNAtap
miRNAtap provides the implementation of ranked target list 
aggregation method. It allows for programmatic access to aggregated 
miRNA target predictions. Direct predictions are available for Homo 
sapiens and Mus musculus, predictions for Rattus norvegicus (and 
other species in the future) are derived through homology transfer.
It is particularly useful for longer workflows where ranked target data 
can be used in further analysis, e.g. interaction networks, GO or 
pathways. The package is available on Bioconductor, the data is stored 
in an annotation package  miRNAtap.db (also on Bioconductor).
 

Target list aggregation
Four main target prediction sources at the moment include: Pictar, 
Miranda, TargetScan, DIANA. However, there is poor convergence 
between them even though they are all based on  canonical binding – 
2-7 nt 5' end of miRNA to 3' UTR of mRNA, as well as site conservation.

In order to improve predictions and reduce noise at the top of the list 
we propose a method of aggregating existing predictions, where the 
aggregated rank is calculated according to the equation:

where M is the number of sources which returned the gene and Xi is 
its rank in i-th source. To appear in the aggregated list a target needs 
to appear in at least 2 or 3 source lists.
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Example use in pathway analysis from Pai et 
al. (Front. Cell. Neurosci. 2014)
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